Warzone2100 JavaScript Scripting API

1 Introduction

Warzone2100 contains a scripting language for implementing Als, campaigns
and some of the game rules. It uses JavaScript, so you should become familiar
with this language before proceeding with this document. A number of very
good guides to JavaScript exist on the Internet.

The following hard-coded files exist for game rules that use this API:

multiplay /skirmish /rules.js Basic game rules - base setup, starting re-
search, winning and losing.

multiplay /script/scavfact.js Scavenger Al. This script is active if scav-
engers are.

For ordinary Al scripts, these are controlled using ’.ai’ files that are
present in the 'multiplayer/skirmish’ directory. Here is an example of an
".ai’ file that defines an Al implemented using this API:

[AI]
name = "Semperfi JS"
js = semperfi.js

It references a ’.js’ JavaScript file that needs to be in the same directory
as the ".ai’ file. The code in this file is accessed through specially named
functions called ’events’. These are defined below. An event is expected to
carry out some computation then return immediately. The game is on hold
while an event is processed, so do not do too many things at once, or else
the player will experience stuttering.

All global variables are saved when the game is saved. However, do not
try to keep JavaScript objects that are returned from API functions defined

1



here around in the global scope. They are not meant to be used this way,
and bad things may happen. If you need to keep static arrays around, it is
better to keep them locally defined to a function, as they will then not be
saved and loaded.

One error that it is easy to make upon initially learning JavaScript and
using this API, is to try to use the 'for (... in ...)" construct to iterate over
an array of objects. This does not work! Instead, use code like the following:

var droidlist = enumDroid(me, DROID.CONSTRUCT);
for (var i = 0; i < droidlist.length; i++)

{

var droid = droidlist [i];

The above code gets a list of all your construction droids, and iterates
over them one by one.

The droid object that you receive here has multiple properties that can be
accessed to learn more about it. These propertie are read-only, and cannot
be changed. In fact, objects that you get are just a copies of game state, and
do not give any access to changing the game state itself.

Any value written in ALL_.CAPS_WITH_UNDERSCORES are enums,
special read-only constants defined by the game.

2 Common Objects

Some objects are described under the functions creating them. The following
objects are produced by multiple functions and widely used throughout, so
it is better to learn about them first.

2.1 Research

Describes a research item. The following properties are defined:
power Number of power points needed for starting the research.

points Number of resarch points needed to complete the research.



started A boolean saying whether or not this research has been started by
current player or any of its allies.

done A boolean saying whether or not this research has been completed.

name A string containing the canonical name of the research.

2.2 Structure

Describes a structure (building). It inherits all the properties of the base
object (see below). In addition, the following properties are defined:

status The completeness status of the structure. It will be one of BEING _-
BUILT, BUILT and BEING_DEMOLISHED.

type The type will always be STRUCTURE.

stattype The stattype defines the type of structure. It will be one of HQ,
FACTORY, POWER_GEN, RESOURCE_EXTRACTOR, DEFENSE,
WALL, RESEARCH_LAB, REPAIR_FACILITY, CYBORG_FACTORY,
VTOL_FACTORY, REARM_PAD, SAT _UPLINK, GATE and COM-
MAND_CONTROL.

2.3 Feature

Describes a feature (game object not owned by any player). It inherits all
the properties of the base object (see below). In addition, the following
properties are defined:

type It will always be FEATURE.

2.4 Droid

Describes a droid. It inherits all the properties of the base object (see below).
In addition, the following properties are defined:

type It will always be DROID.

order The current order of the droid. This is its plan. The following orders
are defined:



DORDER _ATTACK Order a droid to attack something.
DORDER_MOVE Order a droid to move somewhere.

DORDER_SCOUT Order a droid to move somewhere and stop to
attack anything on the way.

DORDER _BUILD Order a droid to build something.
DORDER _HELPBUILD Order a droid to help build something.

DORDER _LINEBUILD Order a droid to build something repeat-
edly in a line.

DORDER _REPAIR Order a droid to repair something.
DORDER _RETREAT Order a droid to retreat back to HQ.
DORDER PATROL Order a droid to patrol.

DORDER _BUILDMODULE Order a droid to build a module.

action The current action of the droid. This is how it intends to carry out
its plan. The C++ code may change the action frequently as it tries
to carry out its order. You never want to set the action directly, but it
may be interesting to look at what it currently is.

2.5 Base Object

Describes a basic object. It will always be a droid, structure or feature, but
sometimes the difference does not matter, and you can treat any of them
simply as a basic object. The following properties are defined:

type It will be one of DROID, STRUCTURE or FEATURE.

id The unique ID of this object.

x X position of the object in tiles.

y Y position of the object in tiles.

z 7 (height) position of the object in tiles.

player The player owning this object.

selected A boolean saying whether 'selectedPlayer’ has selected this object.

name A user-friendly name for this object.



3 Events

3.1 eventGamelnit()

An event that is run once as the game is initialized. Not all game may have
been properly initialized by this time, so use this only to initialize script
state.

3.2 eventStartLevel()

An event that is run once the game has started and all game data has been
loaded.

3.3 eventDroidBuilt(droid, structure)

An event that is run every time a factory produces a droid.

3.4 eventStructureAttacked(structure, attacker)

An event that is run when a structure is attacked. The attacker parameter
may be either a structure or a droid.

3.5 eventResearched(research, structure)

An event that is run whenever a new research is available. The structure
parameter is defined only when the research comes from a research lab.

4 Globals

me The player the script is currently running as.

selectedPlayer The player ontrolled by the client on which the script
runs.

gameTime The current game time. Updated before every invokation of a
script.



difficulty The currently set campaign difficulty, or the current AI’s
difficulty setting. It will be one of EASY, MEDIUM, HARD or
INSANE.

mapName The name of the current map.

baseType The type of base that the game starts with. It will be one of
CAMP_CLEAN, CAMP _BASE or CAMP_WALLS.

alliancesType The type of alliances permitted in this game. It will be one
of NO_ALLIANCES, ALLIANCES or ALLIANCES_TEAMS.

powerType The power level set for this game.

maxPlayers The number of active players in this game.
scavengers Whether or not scavengers are activated in this game.
mapWidth Width of map in tiles.

mapHeight Height of map in tiles.

5 Functions

5.1 setTimer(function, milliseconds|, object])

Set a function to run repeated at some given time interval. The function to
run is the first parameter, and it must be quoted, otherwise the function
will be inlined. The second parameter is the interval, in milliseconds. A
third, optional parameter can be a game object to pass to the timer
function. If the game object dies, the timer stops running. The minimum
number of milliseconds is 100, but such fast timers are strongly discouraged
as they may deteriorate the game performance.

function conDroids ()

{
}

// call conDroids every 4 seconds
setTimer (" conDroids”, 4000);

do stuff




5.2 removeTimer(function)

Removes an existing timer. The first parameter is the function timer to
remove, and its name must be quoted.

5.3 queue(function[, object])

Queues up a function to run at a later game frame. This is useful to
prevent stuttering during the game, which can happen if too much script
processing is done at once. The function to run is the first parameter, and
it must be quoted, otherwise the function will be inlined. A second,
optional parameter can be a game object to pass to the queued function. If
the game object dies before the queued call runs, nothing happens.

5.4 bind(function, object|, player])

Bind a function call to an object. The function is called before the object is
destroyed. The function to run is the first parameter, and it

must be quoted, otherwise the function will be inlined. The second
argument is the object to bind to. A third, optional player parameter may
be passed, which may be used for filtering, depending on the object type.
NOTE: This function is under construction and is subject to total change!

5.5 include(file)

Includes another source code file at this point. This is experimental, and
breaks the lint tool, so use with care.

5.6 label(key)

Fetch something denoted by a label. Labels are areas, positions or game
objects on the map defined using the map editor and stored together with
the map. The only argument is a text label. The function returns an object
that has a type variable defining what it is (in case this is unclear). This
type will be one of DROID, STRUCTURE, FEATURE, AREA and
POSITION. The AREA has defined 'x’, 'y’, 'x2’, and 'y2’, while
POSITION has only defined 'x” and ’y’.



5.7 enumGroup(group)

Return an array containing all the droid members of a given group.

5.8 newGroup()

Allocate a new group.

5.9 pursueResearch(lab, research)

Start researching the first available technology on the way to the given
technology. First parameter is the structure to research in, which must be a
research lab. The second parameter is the technology to pursue, as a text
string as defined in "research.txt”.

5.10 getResearch(research)

Fetch information about a given technology item, given by a string that
matches its definition in "research.txt”. The resulting object is composed of
the following variables: power (int), points (int), started (bool), done
(bool), and name (string).

5.11 enumResearch()

Returns an array of all research items that are currently and immediately
available for research. These items are composite objects, as returned by
getResearch.

5.12 componentAvailable(component type,
component name)

Checks whether a given component is available to the current player.

5.13 buildDroid(factory, name, body, propulsion,
reserved, turrets...)

Start factory production of new droid with the given name, body,
propulsion and turrets. The reserved parameter should be passed an empty



string for now.

5.14 enumStruct([player[, structure type][, looking
player]]])

Returns an array of structure objects. If no parameters given, it will return
all of the structures for the current player. The second parameter is the
name of the structure type, as defined in ”structures.txt”. The third
parameter can be used to filter by visibility, the default is not to filter.

5.15 enumFeature(player, name)

Returns an array of all features seen by player of given name, as defined in
"features.txt”. If player is -1, it will return all features irrespective of
visibility to any player. If name is empty, it will return any feature.

5.16 enumDroid([player[, droid type[, looking
player]]])

Returns an array of droid objects. If no parameters given, it will return all
of the droids for the current player. The second, optional parameter is the
name of the droid type, which can currently only be
DROID_CONSTRUCT. The third parameter can be used to filter by
visibility - the default is not to filter.

5.17 debug(string...)

Output text to the command line.

5.18 pickStructLocation(droid, structure type, x, y)

Pick a location for constructing a certain type of building near some given
position. Returns a position object containing "x” and "y” values, if
successful.

5.19 structureldle(structure)

Is given structure idle?



5.20 removeStruct(structure)

Immediately remove the given structure from the map.

5.21 console(strings...)

Print text to the player console.

5.22 groupAddArea(group, x1, y1, x2, y2)

Add any droids inside the given area to the given group.

5.23 groupAddDroid(group, droid)
Add given droid to given group.

5.24 distBetweenTwoPoints(x1, y1, x2, y2)

Return distance between two points.

5.25 groupSize(group)

Return the number of droids currently in the given group.

5.26 droidCanReach(droid, x, y)

Return whether or not the given droid could possibly drive to the given
position. Does not take player built blockades into account.

5.27 orderDroidObj(droid, order, object)

Give a droid an order to do something to something.

5.28 orderDroidStatsLoc(droid, order, structure
type, x, y)

Give a droid an order to build someting at the given position.

10



5.29 orderDroidLoc(droid, order, x, y)

Give a droid an order to do something at the given location.

5.30 setMissionTime(time)

5.31 setReinforcementTime(time)

5.32 setStructureLimits(structure type, limit)
5.33 centreView(x, y)

Center the player’s camera at the given position.

5.34 playSound(sound], x, y, z])

5.35 gameOverMessage(won)

5.36 completeResearch(research|, player])
5.37 enableResearch(research[, player])
5.38 setPower(power|, player])

5.39 enableStructure(structure type)

5.40 addReticuleButton(button type)

5.41 applyLimitSet()

5.42 enableComponent(component, player)
5.43 makeComponentAvailable(component, player)
5.44 allianceExistsBetween(player, player)
5.45 _(string)

Mark string for translation.

11



5.46 playerPower(player)

Return amount of power held by given player.

5.47 isStructureAvailable(structure type, player)
5.48 hackNetOff()

Turn off network transmissions. FIXME - find a better way.

5.49 hackNetOn()
FIXME - find a better way.

12



